بدائل البحث:
process optimization » model optimization (توسيع البحث)
robust optimization » robust estimation (توسيع البحث), joint optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary 0 » binary _ (توسيع البحث), binary b (توسيع البحث)
0 robust » _ robust (توسيع البحث), a robust (توسيع البحث), b robust (توسيع البحث)
process optimization » model optimization (توسيع البحث)
robust optimization » robust estimation (توسيع البحث), joint optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary 0 » binary _ (توسيع البحث), binary b (توسيع البحث)
0 robust » _ robust (توسيع البحث), a robust (توسيع البحث), b robust (توسيع البحث)
-
41
-
42
-
43
-
44
-
45
Process flow diagram of CBFD.
منشور في 2024"…The results demonstrate that CBFD achieves a average precision of 0.97 for the test image, outperforming Superpoint, Directional Intensified Tertiary Filtering (DITF), Binary Robust Independent Elementary Features (BRIEF), Binary Robust Invariant Scalable Keypoints (BRISK), Speeded Up Robust Features (SURF), and Scale Invariant Feature Transform (SIFT), which achieve scores of 0.95, 0.92, 0.72, 0.66, 0.63 and 0.50 respectively. …"
-
46
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …"
-
47
-
48
-
49
An Example of a WPT-MEC Network.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
50
Related Work Summary.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
51
Simulation parameters.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
52
Training losses for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
53
Normalized computation rate for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
54
Summary of Notations Used in this paper.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
55
-
56
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
منشور في 2019"…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …"
-
57
-
58
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
-
59
Parameter settings.
منشور في 2024"…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …"
-
60