بدائل البحث:
process optimization » model optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a swarm » a warm (توسيع البحث), _ swarm (توسيع البحث)
process optimization » model optimization (توسيع البحث)
based process » based processes (توسيع البحث), based probes (توسيع البحث), based proteins (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a swarm » a warm (توسيع البحث), _ swarm (توسيع البحث)
-
41
-
42
-
43
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
منشور في 2025"…The performance of the proposed LEGAN-BEPO-BCMANET technique attains 29.786%, 19.25%, 22.93%, 27.21%, 31.02%, 26.91%, and 25.61% greater throughput, compared to existing methods like Blockchain-based BATMAN protocol utilizing MANET with an ensemble algorithm (BATMAN-MANET), Block chain-based trusted distributed routing scheme with optimized dropout ensemble extreme learning neural network in MANET (DEELNN-MANET), A secured trusted routing utilizing structure of a new directed acyclic graph-blockchain in MANET internet of things environment (DAG-MANET), An Optimized Link State Routing Protocol with Blockchain Framework for Efficient Video-Packet Transmission and Security over MANET (OLSRP-MANET), Auto-metric Graph Neural Network based Blockchain Technology for Protected Dynamic Optimum Routing in MANET (AGNN-MANET) and Data security-based routing in MANETs under key management process (DSR-MANET) respectively.…"
-
44
-
45
A* Path-Finding Algorithm to Determine Cell Connections
منشور في 2025"…Pixel paths were classified using a z-score brightness threshold of 1.21, optimized for noise reduction and accuracy. The A* algorithm then evaluated connectivity by minimizing Euclidean distance and heuristic cost between cells. …"
-
46
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
47
SHAP analysis for LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
48
Comparison of intrusion detection systems.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
49
Parameter setting for CBOA and PSO.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
50
NSL-KDD dataset description.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
51
The architecture of LSTM cell.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
52
The architecture of ILSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
53
Parameter setting for LSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
54
LITNET-2020 data splitting approach.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
55
Transformation of symbolic features in NSL-KDD.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
56
An Example of a WPT-MEC Network.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
57
Related Work Summary.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
58
Simulation parameters.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
59
Training losses for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
60
Normalized computation rate for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"