بدائل البحث:
processes classification » proposed classification (توسيع البحث), protein classification (توسيع البحث), precision classification (توسيع البحث)
based processes » care processes (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 swarm » _ swarm (توسيع البحث)
processes classification » proposed classification (توسيع البحث), protein classification (توسيع البحث), precision classification (توسيع البحث)
based processes » care processes (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 swarm » _ swarm (توسيع البحث)
-
81
-
82
-
83
-
84
Hyperparameters of the LSTM Model.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
85
The AD-PSO-Guided WOA LSTM framework.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
86
Prediction results of individual models.
منشور في 2025"…The capacity to confront and overcome this obstacle is where machine learning and metaheuristic algorithms shine. This study introduces the Adaptive Dynamic Particle Swarm Optimization enhanced with the Guided Whale Optimization Algorithm (AD-PSO-Guided WOA) for rainfall prediction. …"
-
87
The overview of the proposed method.
منشور في 2023"…<p>Five main steps, including reading, preprocessing, feature selection, classification, and association rule mining were applied to the mRNA expression data. 1) Required data was collected from the TCGA repository and got organized during the reading step. 2) The pre-processing step includes two sub-steps, nested cross-validation and data normalization. 3) The feature-selection step contains two parts: the filter method based on a t-test and the wrapper method based on binary Non-Dominated Sorting Genetic Algorithm II (NSGAII) for mRNA data, in which candidate mRNAs with more relevance to early-stage and late-stage Papillary Thyroid Cancer (PTC) were selected. 4) Multi-classifier models were utilized to evaluate the discrimination power of the selected mRNAs. 5) The Association Rule Mining method was employed to discover the possible hidden relationship between the selected mRNAs and early and late stages of PTC firstly, and the complex relationship among the selected mRNAs secondly.…"
-
88
-
89
Data_Sheet_1_Deep Learning-Based Classification of GAD67-Positive Neurons Without the Immunosignal.pdf
منشور في 2021"…We then sought to detect GAD67-positive neurons without GAD67 immunosignals using a custom-made deep learning-based algorithm. Using this deep learning-based model, we succeeded in the binary classification of the neurons using Nissl and NeuN signals without referring to the GAD67 signals. …"
-
90
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
91
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
92
-
93
Image1_Benchmark of Data Processing Methods and Machine Learning Models for Gut Microbiome-Based Diagnosis of Inflammatory Bowel Disease.eps
منشور في 2022"…We demonstrate that taxonomic features processed with a compositional transformation method and batch effect correction with the naive zero-centering method attain the best classification performance. …"
-
94
-
95
Image_1_A predictive model based on random forest for shoulder-hand syndrome.JPEG
منشور في 2023"…</p>Results<p>A binary classification model was trained based on 25 handpicked features. …"
-
96
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
-
97
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
منشور في 2021"…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
-
98
Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish)
منشور في 2024"…</li></ol><ul><li>Converted to binary classification:</li><li>Negative tweets (original label 0) → Hate (1).…"
-
99
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
-
100
DataSheet_1_Patient-Level Effectiveness Prediction Modeling for Glioblastoma Using Classification Trees.docx
منشور في 2020"…Secondly, a classification tree algorithm was trained and validated for dividing individual patients into treatment response and non-response groups. …"