بدائل البحث:
processes identification » progression identification (توسيع البحث), protein identification (توسيع البحث), proteomic identification (توسيع البحث)
identification algorithm » classification algorithm (توسيع البحث), detection algorithm (توسيع البحث)
based processes » care processes (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 swarm » _ swarm (توسيع البحث)
processes identification » progression identification (توسيع البحث), protein identification (توسيع البحث), proteomic identification (توسيع البحث)
identification algorithm » classification algorithm (توسيع البحث), detection algorithm (توسيع البحث)
based processes » care processes (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary 2 » binary _ (توسيع البحث), binary b (توسيع البحث)
2 swarm » _ swarm (توسيع البحث)
-
1
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
Pressure-Stabilized Zinc Trifluoride
منشور في 2020"…By combining the particle swarm optimization algorithm with first-principles calculation, the high-pressure phase diagram of Zn–F binary compounds was established. …"
-
18
Table_1_A scheduling route planning algorithm based on the dynamic genetic algorithm with ant colony binary iterative optimization for unmanned aerial vehicle spraying in multiple...
منشور في 2022"…Simulation tests reveal that the dynamic genetic algorithm with ant colony binary iterative optimization (DGA-ACBIO) proposed in this study shortens the optimal flight range by 715.8 m, 428.3 m, 589 m, and 287.6 m compared to the dynamic genetic algorithm, ant colony binary iterative algorithm, artificial fish swarm algorithm (AFSA) and particle swarm optimization (PSO), respectively, for multiple tea field scheduling route planning. …"
-
19
-
20