يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '(( binary based processes optimisation algorithm ) OR ( binary b random optimization algorithm ))*', وقت الاستعلام: 0.42s تنقيح النتائج
  1. 1
  2. 2
  3. 3

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx حسب Yupeng Li (507508)

    منشور في 2023
    "…In bSRWPSO-FKNN, the core of which is to optimize the classification performance of FKNN through binary SRWPSO.…"
  4. 4

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>K)</b> Algorithm selection from all models. <b>L)</b> Random forest selection. …"
  5. 5
  6. 6

    Construction of reduced chemical mechanisms orientated toward specific applications: a case study of primary reference fuel حسب Bo Niu (102579)

    منشور في 2022
    "…And then, the genetic algorithm with binary variables is applied to further reduce the pathways of the small-molecule reactions targeted at ignition delay times in shock tubes, major species (fuel, O<sub>2</sub>, CO, and CO<sub>2</sub>) profiles in jet-stirred reactors, and laminar flame speeds, respectively. …"
  7. 7

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
  8. 8

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx حسب Ali Nabavi (21097424)

    منشور في 2025
    "…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"
  9. 9

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"