Search alternatives:
property optimization » process optimization (Expand Search), policy optimization (Expand Search), robust optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
used based » seed based (Expand Search)
property optimization » process optimization (Expand Search), policy optimization (Expand Search), robust optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
used based » seed based (Expand Search)
-
1
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: -
2
-
3
-
4
Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF
Published 2019“…This method is implemented in PyAR (https://github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts, generation of several trial geometries and gradient-based local optimization of the trial geometries. …”
-
5
-
6
-
7
MSE for ILSTM algorithm in binary classification.
Published 2023“…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
-
8
DE algorithm flow.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
9
-
10
Test results of different algorithms.
Published 2025“…<div><p>To solve the problems of insufficient global optimization ability and easy loss of population diversity in building interior layout design, this study proposes a novel layout optimization model integrating interactive genetic algorithm and improved differential evolutionary algorithm to improve the global optimization ability and maintain population diversity in building layout design. …”
-
11
-
12
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
13
Algorithm for generating hyperparameter.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
14
Results of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
15
ROC comparison of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
16
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
17
Best optimizer results of Lightbgm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
18
Best optimizer results of Adaboost.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
19
Best optimizer results of Lightbgm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
20
Random forest with hyperparameter optimization.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”