Showing 1 - 20 results of 20 for search '(( binary based property optimization algorithm ) OR ( primary data wolf optimization algorithm ))', query time: 0.44s Refine Results
  1. 1

    S1 Data - by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  2. 2

    Parameter settings for algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  3. 3

    Parameter settings for algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  4. 4

    Average runtime of different algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  5. 5

    Average runtime of different algorithms. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  6. 6

    Flowchart of GJO-GWO algorithm. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  7. 7
  8. 8
  9. 9

    Detailed information of benchmark functions. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  10. 10

    Evaluation metrics of the models’ performance. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  11. 11

    Detailed information of datasets. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  12. 12

    Friedman test results. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  13. 13

    Average number of selected features. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  14. 14

    Wilcoxon rank sum test results. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  15. 15

    Wilcoxon rank sum test results. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  16. 16

    Average number of selected features. by Guangwei Liu (181992)

    Published 2024
    “…<div><p>This paper proposes a feature selection method based on a hybrid optimization algorithm that combines the Golden Jackal Optimization (GJO) and Grey Wolf Optimizer (GWO). …”
  17. 17

    Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF by Maya Khatun (7437011)

    Published 2019
    “…This method is implemented in PyAR (https://github.com/anooplab/pyar) program. The global optimization in PyAR involves two parts, generation of several trial geometries and gradient-based local optimization of the trial geometries. …”
  18. 18
  19. 19

    Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction by Raul A. Flores (2910539)

    Published 2020
    “…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…”
  20. 20

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …”