Showing 61 - 80 results of 81 for search '(( binary based proposed classification algorithm ) OR ( binary 2 codon optimization algorithm ))', query time: 1.05s Refine Results
  1. 61

    Summary of LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  2. 62

    SHAP analysis for LITNET-2020 dataset. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  3. 63

    Comparison of intrusion detection systems. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  4. 64

    Parameter setting for CBOA and PSO. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  5. 65

    NSL-KDD dataset description. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  6. 66

    The architecture of LSTM cell. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  7. 67

    The architecture of ILSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  8. 68

    Parameter setting for LSTM. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  9. 69

    LITNET-2020 data splitting approach. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  10. 70

    Transformation of symbolic features in NSL-KDD. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  11. 71

    Data_Sheet_3_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx by Pijush Das (3196647)

    Published 2020
    “…To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. …”
  12. 72

    Data_Sheet_2_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx by Pijush Das (3196647)

    Published 2020
    “…To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. …”
  13. 73

    Data_Sheet_1_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx by Pijush Das (3196647)

    Published 2020
    “…To overcome this limitation of SVM-RFE, we propose a novel feature selection algorithm, termed as “sigFeature” (https://bioconductor.org/packages/sigFeature/), based on SVM and t statistic to discover the differentially significant features along with good performance in classification. …”
  14. 74

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…This work presents an efficient pipeline for binary and subtype classification of acute lymphoblastic leukemia. …”
  15. 75

    Structure-based antibody paratope prediction with 3D Zernike descriptors and SVM by Sebastian Daberdaku (4391767)

    Published 2019
    “…Roto-translationally invariant descriptors are computed from circular patches of the antibody surface enriched with a chosen subset of physicochemical properties from the AAindex1 amino acid index set, and are used as samples for a binary classification problem. An SVM classifier is used to distinguish interface surface patches from non-interface ones. …”
  16. 76

    Table 1_Non-obtrusive monitoring of obstructive sleep apnea syndrome based on ballistocardiography: a preliminary study.docx by Biyong Zhang (20906192)

    Published 2025
    “…</p>Results<p>Cross-validated on 32 subjects, the proposed approach achieved an accuracy of 71.9% for four-class severity classification and 87.5% for binary classification (AHI less than 15 or not).…”
  17. 77

    Table1_Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network.XLSX by Zhen Shen (393133)

    Published 2023
    “…Various deep learning-based algorithms have been proposed to identify CircRNA-protein binding sites. …”
  18. 78

    DataSheet1_Nucleotide-level prediction of CircRNA-protein binding based on fully convolutional neural network.PDF by Zhen Shen (393133)

    Published 2023
    “…Various deep learning-based algorithms have been proposed to identify CircRNA-protein binding sites. …”
  19. 79

    Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx by Changjiang Liang (21099887)

    Published 2025
    “…To address these limitations, this study proposed a method for detecting litchi maturity states based on UAV remote sensing and YOLOv8-FPDW. …”
  20. 80

    Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model by Ramya Chinnasamy (21633527)

    Published 2025
    “…The proposed model was evaluated on benchmark datasets including UNSW-NB15, CIC-IDS2017, and H23Q under both binary and multiclass settings. …”