Search alternatives:
proteins optimization » process optimization (Expand Search), routing optimization (Expand Search), property optimization (Expand Search)
code optimization » codon optimization (Expand Search), model optimization (Expand Search), dose optimization (Expand Search)
based proteins » based protein (Expand Search), based proteomics (Expand Search), capsid proteins (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
primary data » primary care (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
proteins optimization » process optimization (Expand Search), routing optimization (Expand Search), property optimization (Expand Search)
code optimization » codon optimization (Expand Search), model optimization (Expand Search), dose optimization (Expand Search)
based proteins » based protein (Expand Search), based proteomics (Expand Search), capsid proteins (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
primary data » primary care (Expand Search)
data code » data model (Expand Search), data came (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
Table_1_Screening of Long Non-coding RNAs Biomarkers for the Diagnosis of Tuberculosis and Preliminary Construction of a Clinical Diagnosis Model.docx
Published 2022“…Background<p>Pathogenic testing for tuberculosis (TB) is not yet sufficient for early and differential clinical diagnosis; thus, we investigated the potential of screening long non-coding RNAs (lncRNAs) from human hosts and using machine learning (ML) algorithms combined with electronic health record (EHR) metrics to construct a diagnostic model.…”
-
8
-
9
-
10
-
11
-
12
ECE6379_PSOM.zip
Published 2021“…Optimization algorithms that are commonly used to solve these problems will also be covered including linear programming, mixed-integer linear programming, Lagrange relaxation, dynamic programming, branch and bound, and duality theory.…”
-
13
-
14
-
15
IUTF Dataset(Enhanced): Enabling Cross-Border Resource for Analysing the Impact of Rainfall on Urban Transportation Systems
Published 2025“…</p><p dir="ltr"><b>Quality Assurance</b>: Comprehensive technical validation demonstrates the dataset's integrity, sensitivity to rainfall impacts, and capability to reveal complex traffic-weather interaction patterns.</p><h2>Data Structure</h2><p dir="ltr">The dataset is organized into four primary components:</p><ol><li><b>Road Network Data</b>: Topological representations including spatial geometry, functional classification, and connectivity information</li><li><b>Traffic Sensor Data</b>: Sensor metadata, locations, and measurements at both 5-minute and hourly resolutions</li><li><b>Precipitation Data</b>: Hourly meteorological information with spatial grid cell metadata</li><li><b>Derived Analytical Matrices</b>: Pre-computed structures for advanced spatial-temporal modelling and network analyses</li></ol><h2>File Formats</h2><ul><li><b>Tabular Data</b>: Apache Parquet format for optimal compression and fast query performance</li><li><b>Numerical Matrices</b>: NumPy NPZ format for efficient scientific computing</li><li><b>Total Size</b>: Approximately 2 GB uncompressed</li></ul><h2>Applications</h2><p dir="ltr">The IUTF dataset enables diverse analytical applications including:</p><ul><li><b>Traffic Flow Prediction</b>: Developing weather-aware traffic forecasting models</li><li><b>Infrastructure Planning</b>: Identifying vulnerable network components and prioritizing investments</li><li><b>Resilience Assessment</b>: Quantifying system recovery curves, robustness metrics, and adaptive capacity</li><li><b>Climate Adaptation</b>: Supporting evidence-based transportation planning under changing precipitation patterns</li><li><b>Emergency Management</b>: Improving response strategies for weather-related traffic disruptions</li></ul><h2>Methodology</h2><p dir="ltr">The dataset creation involved three main stages:</p><ol><li><b>Data Collection</b>: Sourcing traffic data from UTD19, road networks from OpenStreetMap, and precipitation data from ERA5 reanalysis</li><li><b>Spatio-Temporal Harmonization</b>: Comprehensive integration using novel algorithms for spatial alignment and temporal synchronization</li><li><b>Quality Assurance</b>: Rigorous validation and technical verification across all cities and data components</li></ol><h2>Code Availability</h2><p dir="ltr">Processing code is available at: https://github.com/viviRG2024/IUTDF_processing</p>…”
-
16
-
17
-
18
CSPP instance
Published 2025“…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…”
-
19
Supplementary file 1_A real-world disproportionality analysis of FDA adverse event reporting system (FAERS) events for lecanemab.docx
Published 2025“…Using the Reporting Odds Ratio (ROR), Proportional Reporting Ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), and Multi-item Gamma Poisson Shrinker (MGPS) algorithms, we conducted a comprehensive analysis of lecanemab-related AEs, restricting the analysis to AEs with the role code of primary suspect (PS).…”