Search alternatives:
quality optimization » policy optimization (Expand Search), whale optimization (Expand Search), path optimization (Expand Search)
led optimization » lead optimization (Expand Search), yet optimization (Expand Search), based optimization (Expand Search)
based quality » care quality (Expand Search), seed quality (Expand Search), bone quality (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based led » based 3d (Expand Search), based log (Expand Search), based l2 (Expand Search)
quality optimization » policy optimization (Expand Search), whale optimization (Expand Search), path optimization (Expand Search)
led optimization » lead optimization (Expand Search), yet optimization (Expand Search), based optimization (Expand Search)
based quality » care quality (Expand Search), seed quality (Expand Search), bone quality (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based led » based 3d (Expand Search), based log (Expand Search), based l2 (Expand Search)
-
1
-
2
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
3
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
4
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
Published 2020“…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
-
5
ROC curve for binary classification.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
6
Confusion matrix for binary classification.
Published 2024“…The study introduced a scheme for enhancing images to improve the quality of the datasets. Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …”
-
7
Datasets and their properties.
Published 2023“…However, the underlying deficiency of the single binary optimizer is transferred to the quality of the features selected. …”
-
8
Parameter settings.
Published 2023“…However, the underlying deficiency of the single binary optimizer is transferred to the quality of the features selected. …”
-
9
Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity
Published 2019“…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. …”
-
10
SHAP bar plot.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
11
Sample screening flowchart.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
12
Descriptive statistics for variables.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
13
SHAP summary plot.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
14
ROC curves for the test set of four models.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
15
Display of the web prediction interface.
Published 2025“…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …”
-
16
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
17
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
18
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
19
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
-
20
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”