يعرض 1 - 9 نتائج من 9 نتيجة بحث عن '(( binary based solution classification algorithm ) OR ( binary b wolf optimization algorithm ))', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 1

    Implementation of Adaptive Genetic Algorithm for classification problems حسب Dr.E.N. Ganesh (12315038)

    منشور في 2022
    "…In this article,</p> <p>we propose a genetic algorithm approach to the</p> <p>classification problem. …"
  2. 2
  3. 3
  4. 4
  5. 5

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf حسب Cecilia Lindig-León (7889777)

    منشور في 2020
    "…The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. …"
  6. 6

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf حسب Muhammad Awais (263096)

    منشور في 2024
    "…This work presents an efficient pipeline for binary and subtype classification of acute lymphoblastic leukemia. …"
  7. 7

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
    "…</p><p dir="ltr"><br></p><p dir="ltr"><b>RAO (Rao Optimization Algorithm):</b><br>RAO is a parameter-less optimization algorithm that updates solutions based on simple arithmetic operations involving the best and worst individuals in the population. …"
  8. 8

    Data_Sheet_1_Predicting Pulmonary Function From the Analysis of Voice: A Machine Learning Approach.pdf حسب Md. Zahangir Alam (12056864)

    منشور في 2022
    "…To predict severity of lung function impairment, the SVM-based model performed best in multi-class classification (accuracy = 73.20%), whereas the RF-based model performed best in binary classification models for predicting abnormal lung function (accuracy = 85%).…"
  9. 9

    Table_1_Machine Learning for Outcome Prediction in First-Line Surgery of Prolactinomas.docx حسب Markus Huber (317962)

    منشور في 2022
    "…</p>Methods<p>By jointly examining two independent performance metrics – the area under the receiver operating characteristic (AUROC) and the Matthews correlation coefficient (MCC) – in combination with a stacked super learner, we present a novel perspective on how to assess and compare the discrimination capacity of a set of binary classifiers.</p>Results<p>We demonstrate that for upfront surgery in prolactinoma patients there are not a one-algorithm-fits-all solution in outcome prediction: different algorithms perform best for different time points and different outcomes parameters. …"