بدائل البحث:
testing optimization » routing optimization (توسيع البحث), learning optimization (توسيع البحث), design optimization (توسيع البحث)
were optimization » before optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
based testing » care testing (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
values were » values per (توسيع البحث)
testing optimization » routing optimization (توسيع البحث), learning optimization (توسيع البحث), design optimization (توسيع البحث)
were optimization » before optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
based testing » care testing (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
values were » values per (توسيع البحث)
-
1
-
2
-
3
-
4
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
منشور في 2020"…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …"
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
SHAP analysis mean value.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
13
-
14
-
15
-
16
-
17
-
18
-
19
Algorithm for generating hyperparameter.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
20
Results of machine learning algorithm.
منشور في 2024"…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"