Showing 1 - 20 results of 65 for search '(( binary based well optimization algorithm ) OR ( binary based random optimization algorithm ))', query time: 0.69s Refine Results
  1. 1
  2. 2

    DE algorithm flow. by Ling Zhao (111365)

    Published 2025
    “…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
  3. 3
  4. 4
  5. 5

    Test results of different algorithms. by Ling Zhao (111365)

    Published 2025
    “…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
  6. 6
  7. 7

    SHAP bar plot. by Meng Cao (105914)

    Published 2025
    “…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …”
  8. 8

    Sample screening flowchart. by Meng Cao (105914)

    Published 2025
    “…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …”
  9. 9

    Descriptive statistics for variables. by Meng Cao (105914)

    Published 2025
    “…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …”
  10. 10

    SHAP summary plot. by Meng Cao (105914)

    Published 2025
    “…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …”
  11. 11

    ROC curves for the test set of four models. by Meng Cao (105914)

    Published 2025
    “…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …”
  12. 12

    Display of the web prediction interface. by Meng Cao (105914)

    Published 2025
    “…Subsequently, a CI risk prediction model was constructed using four machine learning algorithms: Support Vector Machine (SVM), Random Forest (RF), Neural Network (NN), and Logistic Regression (LR). …”
  13. 13
  14. 14
  15. 15
  16. 16

    Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data by Changhun Kim (682542)

    Published 2022
    “…Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
  17. 17

    Parameter settings of the comparison algorithms. by Ying Li (38224)

    Published 2024
    “…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
  18. 18

    QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm by Z.Y. Algamal (5547620)

    Published 2020
    “…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …”
  19. 19

    Plan frame of the house. by Ling Zhao (111365)

    Published 2025
    “…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
  20. 20

    Ablation test results. by Ling Zhao (111365)

    Published 2025
    “…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”