Search alternatives:
whole optimization » whale optimization (Expand Search), dose optimization (Expand Search), phase optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based whole » used whole (Expand Search)
layer wolf » layer self (Expand Search), layer mols (Expand Search)
whole optimization » whale optimization (Expand Search), dose optimization (Expand Search), phase optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based whole » used whole (Expand Search)
layer wolf » layer self (Expand Search), layer mols (Expand Search)
-
1
Comparison of optimization algorithms.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
2
Algorithm comparison.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
3
Process of GWO optimization.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
4
-
5
<i>hi</i>PRS algorithm process flow.
Published 2023“…The sequences can include from a single SNP-allele pair up to a maximum number of pairs defined by the user (<i>l</i><sub>max</sub>). <b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …”
-
6
. Fitness curve.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
7
Partial faults features.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
8
Diagram of faults identification.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
9
Confusion matrix.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
10
Sample group.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
11
Data in the experiment.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
12
Diagram of attention mechanism.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
13
Accuracy curve.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
14
Structure of MLP.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
15
Fault recording signal.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
16
Ablation study.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
17
Dual-channel MLP-Attention model.
Published 2024“…<div><p>In order to improve the accuracy of the transformer fault identification using nature-inspired algorithms, an identification method based on the GWO (Grey Wolf Optimizer)-optimized Dual-channel MLP (Multilayer Perceptron)-Attention is proposed. …”
-
18
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”