Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary sample » final sample (Expand Search), binary people (Expand Search), intra sample (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
sample model » simple model (Expand Search), sample level (Expand Search)
based wolf » based whole (Expand Search), based work (Expand Search), based well (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
wolf optimization » whale optimization (Expand Search), swarm optimization (Expand Search), _ optimization (Expand Search)
binary sample » final sample (Expand Search), binary people (Expand Search), intra sample (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
sample model » simple model (Expand Search), sample level (Expand Search)
based wolf » based whole (Expand Search), based work (Expand Search), based well (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
Algorithm for generating hyperparameter.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
7
-
8
Results of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
9
The comparison of the accuracy score of the benchmark and the proposed models.
Published 2025Subjects: -
10
-
11
-
12
-
13
ROC comparison of machine learning algorithm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
14
Comparison of baseline and hybrid machine learning models in predicting IVF outcomes (%).
Published 2025Subjects: -
15
-
16
Calibration curve of the ABC–LR–RF hybrid model for IVF outcome prediction.
Published 2025Subjects: -
17
-
18
ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
Published 2025Subjects: -
19
Best optimizer results of Lightbgm.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
20
Best optimizer results of Adaboost.
Published 2024“…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”