يعرض 1 - 16 نتائج من 16 نتيجة بحث عن '(( binary based yet optimization algorithm ) OR ( binary based cnn optimization algorithm ))*', وقت الاستعلام: 0.41s تنقيح النتائج
  1. 1
  2. 2
  3. 3

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment حسب Jianfang Cao (1881379)

    منشور في 2019
    "…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …"
  4. 4
  5. 5
  6. 6

    <i>hi</i>PRS algorithm process flow. حسب Michela C. Massi (14599915)

    منشور في 2023
    "…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …"
  7. 7

    SHAP bar plot. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  8. 8

    Sample screening flowchart. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  9. 9

    Descriptive statistics for variables. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  10. 10

    SHAP summary plot. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  11. 11

    ROC curves for the test set of four models. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  12. 12

    Display of the web prediction interface. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
  13. 13
  14. 14

    Presentation_1_Modified GAN Augmentation Algorithms for the MRI-Classification of Myocardial Scar Tissue in Ischemic Cardiomyopathy.PPTX حسب Umesh C. Sharma (10785063)

    منشور في 2021
    "…Currently, there are no optimized deep-learning algorithms for the automated classification of scarred vs. normal myocardium. …"
  15. 15

    Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model حسب Ramya Chinnasamy (21633527)

    منشور في 2025
    "…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …"
  16. 16

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"