بدائل البحث:
loop optimization » codon optimization (توسيع البحث), wolf optimization (توسيع البحث), lead optimization (توسيع البحث)
yet optimization » art optimization (توسيع البحث), lead optimization (توسيع البحث), path optimization (توسيع البحث)
laboratory based » laboratory values (توسيع البحث), laboratory data (توسيع البحث), laboratory tests (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based loop » based blood (توسيع البحث), based log (توسيع البحث)
based yet » based cft (توسيع البحث)
loop optimization » codon optimization (توسيع البحث), wolf optimization (توسيع البحث), lead optimization (توسيع البحث)
yet optimization » art optimization (توسيع البحث), lead optimization (توسيع البحث), path optimization (توسيع البحث)
laboratory based » laboratory values (توسيع البحث), laboratory data (توسيع البحث), laboratory tests (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
based loop » based blood (توسيع البحث), based log (توسيع البحث)
based yet » based cft (توسيع البحث)
-
1
-
2
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…From this dataset we can compute the MI between each interaction and the outcome and <b>(D)</b> obtain a ranked list (<i>I</i><sub><i>δ</i></sub>) based on this metric. <b>(E)</b> Starting from the interaction at the top of <i>I</i><sub><i>δ</i></sub>, <i>hi</i>PRS constructs <i>I</i><sub><i>K</i></sub>, selecting <i>K</i> (where <i>K</i> is user-specified) terms through the greedy optimization of the ratio between MI (<i>relevance</i>) and a suitable measure of similarity for interactions (<i>redundancy)</i> (cf. …"
-
3
SHAP bar plot.
منشور في 2025"…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
4
Sample screening flowchart.
منشور في 2025"…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
5
Descriptive statistics for variables.
منشور في 2025"…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
6
SHAP summary plot.
منشور في 2025"…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
7
ROC curves for the test set of four models.
منشور في 2025"…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
8
Display of the web prediction interface.
منشور في 2025"…</p><p>Results</p><p>Logistic regression analysis identified age, hemoglobin concentration, education level, and social participation as significant factors influencing CI. Models based on NNET, RF, LR, and SVM algorithms were developed, achieving AUC of 0.918, 0.889, 0.872, and 0.760, respectively, on the test set. …"
-
9
-
10
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"