بدائل البحث:
based optimization » whale optimization (توسيع البحث)
primary river » primary driver (توسيع البحث), primary drivers (توسيع البحث), primary role (توسيع البحث)
binary basic » binary mask (توسيع البحث)
basic global » based global (توسيع البحث), waqi global (توسيع البحث)
river based » river basin (توسيع البحث), river basins (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
primary river » primary driver (توسيع البحث), primary drivers (توسيع البحث), primary role (توسيع البحث)
binary basic » binary mask (توسيع البحث)
basic global » based global (توسيع البحث), waqi global (توسيع البحث)
river based » river basin (توسيع البحث), river basins (توسيع البحث)
-
1
-
2
-
3
Results of Comprehensive weighting.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
4
The prediction error of each model.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
5
VIF analysis results for hazard-causing factors.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
6
Benchmark function information.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
7
Geographical distribution of the study area.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
8
Results for model hyperparameter values.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
9
Flow chart of this study.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
10
Stability analysis of each model.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
11
Robustness Analysis of each model.
منشور في 2025"…This study proposes an explainable deep learning framework, the Improved Kepler Optimization Algorithm-Convolutional Neural Network-Bidirectional Gated Recurrent Unit-Attention (IKOA-CNN-BiGRU-Attention) model, for precise debris flow hazard prediction in the Yunnan section of the Nujiang River Basin, China. …"
-
12
CIAHS-Data.xls
منشور في 2025"…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …"