Search alternatives:
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
basis function » loss function (Expand Search), brain function (Expand Search), barrier function (Expand Search)
binary basis » binary mask (Expand Search), binary pairs (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 global » _ global (Expand Search), a global (Expand Search), b global (Expand Search)
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
basis function » loss function (Expand Search), brain function (Expand Search), barrier function (Expand Search)
binary basis » binary mask (Expand Search), binary pairs (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 global » _ global (Expand Search), a global (Expand Search), b global (Expand Search)
-
21
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
22
P-value on CEC-2017(Dim = 30).
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
23
Memory storage behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
24
Elite search behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
25
Description of the datasets.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
26
S and V shaped transfer functions.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
27
S- and V-Type transfer function diagrams.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
28
Collaborative hunting behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
29
Friedman average rank sum test results.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
30
IRBMO vs. variant comparison adaptation data.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
31
Wilcoxon test results for feature selection.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
32
Feature selection metrics and their definitions.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
33
Statistical summary of all models.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
34
Feature selection results.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
35
ANOVA test for feature selection.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
36
Classification performance of ML and DL models.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
37
Parameter settings.
Published 2024“…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. It has proven its efficacy in tackling diverse problems across various fields and real-world applications. …”
-
38
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…The methodology incorporates key features of the symmetric eNRTL-SAC model structure to reduce the number of parameters and uses a hybrid of global search algorithms for parameter estimation. …”
-
39
-
40