Search alternatives:
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
based optimization » whale optimization (Expand Search)
basis function » loss function (Expand Search), brain function (Expand Search), barrier function (Expand Search)
binary basis » binary pairs (Expand Search)
binary mask » binary image (Expand Search)
mask based » task based (Expand Search), tasks based (Expand Search), risk based (Expand Search)
function optimization » reaction optimization (Expand Search), formulation optimization (Expand Search), generation optimization (Expand Search)
based optimization » whale optimization (Expand Search)
basis function » loss function (Expand Search), brain function (Expand Search), barrier function (Expand Search)
binary basis » binary pairs (Expand Search)
binary mask » binary image (Expand Search)
mask based » task based (Expand Search), tasks based (Expand Search), risk based (Expand Search)
-
1
-
2
-
3
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…”
-
4
Classification performance after optimization.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
5
ANOVA test for optimization results.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
6
Wilcoxon test results for optimization.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
7
Wilcoxon test results for feature selection.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
8
Feature selection metrics and their definitions.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
9
Statistical summary of all models.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
10
Feature selection results.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
11
ANOVA test for feature selection.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
12
Classification performance of ML and DL models.
Published 2025“…We applied this hybrid strategy to a Radial Basis Function Network (RBFN), and validated its performance improvements through extensive experiments, including ANOVA and Wilcoxon tests for both feature selection and optimization phases. …”
-
13
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
14
-
15
Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx
Published 2023“…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …”
-
16
-
17
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…”
-
18
-
19
Steps in the extraction of 14 coordinates from the CT slices for the curved MPR.
Published 2025“…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …”
-
20
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
Published 2025“…Multiple SVM models were trained and evaluated, including configurations with linear and RBF (Radial Basis Function) kernels. </p><p dir="ltr">Additionally, an exhaustive hyperparameter search was performed using GridSearchCV to optimize the C, gamma, and kernel parameters (testing 'linear,' 'rbf,' 'poly,' and 'sigmoid'), aiming to find the highest-performing configuration. …”