بدائل البحث:
improve optimization » iterative optimization (توسيع البحث), model optimization (توسيع البحث), process optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary best » binary depot (توسيع البحث)
best based » test based (توسيع البحث), bert based (توسيع البحث), tests based (توسيع البحث)
improve optimization » iterative optimization (توسيع البحث), model optimization (توسيع البحث), process optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary best » binary depot (توسيع البحث)
best based » test based (توسيع البحث), bert based (توسيع البحث), tests based (توسيع البحث)
-
21
-
22
Algorithm for generating hyperparameter.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
23
Results of machine learning algorithm.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
24
ROC comparison of machine learning algorithm.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
25
Random forest with hyperparameter optimization.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
26
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
27
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
28
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …"
-
29
-
30
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
31
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
32
-
33
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …"
-
34
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
منشور في 2020"…Obtaining a reliable QSAR model with few descriptors is an essential procedure in chemometrics. The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …"
-
35
Results of KNN.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
36
Comparison of key techniques in their literature.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
37
Ensemble model architecture.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
38
SHAP analysis mean value.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
39
Proposed methodology.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
40
Comparison table of the proposed model.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"