Search alternatives:
process optimization » model optimization (Expand Search)
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
care process » care processes (Expand Search), cycle process (Expand Search), care access (Expand Search)
binary care » primary care (Expand Search), binary image (Expand Search), binary pairs (Expand Search)
binary d » binary _ (Expand Search), binary b (Expand Search)
d while » a while (Expand Search), red while (Expand Search), de chile (Expand Search)
process optimization » model optimization (Expand Search)
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
care process » care processes (Expand Search), cycle process (Expand Search), care access (Expand Search)
binary care » primary care (Expand Search), binary image (Expand Search), binary pairs (Expand Search)
binary d » binary _ (Expand Search), binary b (Expand Search)
d while » a while (Expand Search), red while (Expand Search), de chile (Expand Search)
-
1
-
2
Data_Sheet_1_Posiform planting: generating QUBO instances for benchmarking.pdf
Published 2023“…<p>We are interested in benchmarking both quantum annealing and classical algorithms for minimizing quadratic unconstrained binary optimization (QUBO) problems. …”
-
3
-
4
-
5
-
6
Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
7
Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
8
Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
9
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
10
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
-
11
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”
-
12
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”