Search alternatives:
improve optimization » iterative optimization (Expand Search), model optimization (Expand Search), process optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
can improve » may improve (Expand Search)
case based » made based (Expand Search), game based (Expand Search), rate based (Expand Search)
improve optimization » iterative optimization (Expand Search), model optimization (Expand Search), process optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
can improve » may improve (Expand Search)
case based » made based (Expand Search), game based (Expand Search), rate based (Expand Search)
-
1
-
2
-
3
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
4
-
5
-
6
Algorithm for generating hyperparameter.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
7
Results of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
8
-
9
ROC comparison of machine learning algorithm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
10
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…From this, we propose: (i) a new ILP model, and (ii) a new solution representation, which, unlike the reference work, guarantees that feasible solutions are obtained throughout the generation of new individuals. Based on this new representation, we proposed and evaluated other approximate methods, including a greedy algorithm and a genetic algorithm that improve the state-of-the-art results for test cases usually used in the literature. …”
-
11
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…Our results show that deep learning and optimization </p><p dir="ltr">methods, such as the binary GWO algorithm, can be successfully applied to melanoma diagnosis. …”
-
12
Best optimizer results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
13
Best optimizer results of Adaboost.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
14
Best optimizer results of Lightbgm.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
15
Random forest with hyperparameter optimization.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
16
Best optimizer results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
17
Best optimizer results of KNN.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
18
Best optimizer results of Decision tree.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
19
Best optimizer result for Adaboost classifier.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
-
20
Best optimizer results for random forest.
Published 2024“…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”