Showing 1 - 20 results of 173 for search '(( binary case based optimization algorithm ) OR ( binary data models optimization algorithm ))', query time: 0.62s Refine Results
  1. 1

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…<p><b>(A)</b> Input data is a list of genotype-level SNPs. <b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
  2. 2
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    MSE for ILSTM algorithm in binary classification. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    LITNET-2020 data splitting approach. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  18. 18

    Analysis and design of algorithms for the manufacturing process of integrated circuits by Sonia Fleytas (16856403)

    Published 2023
    “…From this, we propose: (i) a new ILP model, and (ii) a new solution representation, which, unlike the reference work, guarantees that feasible solutions are obtained throughout the generation of new individuals. Based on this new representation, we proposed and evaluated other approximate methods, including a greedy algorithm and a genetic algorithm that improve the state-of-the-art results for test cases usually used in the literature. …”
  19. 19
  20. 20

    Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data by Changhun Kim (682542)

    Published 2022
    “…In this study, the effects of CI and data scarcity (DS) on the performance of binary classification models were investigated using ToxCast bioassay data. …”