Search alternatives:
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary layer » boundary layer (Expand Search), final layer (Expand Search), linear layer (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
case based » made based (Expand Search), game based (Expand Search), rate based (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary layer » boundary layer (Expand Search), final layer (Expand Search), linear layer (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
case based » made based (Expand Search), game based (Expand Search), rate based (Expand Search)
-
21
Transformation of symbolic features in NSL-KDD.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
22
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
-
23
-
24
DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx
Published 2021“…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …”
-
25
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”