Search alternatives:
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
final layer » single layer (Expand Search)
case based » made based (Expand Search), game based (Expand Search), rate based (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary case » binary mask (Expand Search), binary image (Expand Search), primary case (Expand Search)
final layer » single layer (Expand Search)
case based » made based (Expand Search), game based (Expand Search), rate based (Expand Search)
-
41
Sample classes from UCF101 dataset [40].
Published 2025“…The learned weights of the first module are passed to self-attention, extract the most essential features, and can easily discriminate complex human actions. The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. …”
-
42
Self-attention module for the features learning.
Published 2025“…The learned weights of the first module are passed to self-attention, extract the most essential features, and can easily discriminate complex human actions. The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. …”
-
43
Residual behavior.
Published 2025“…The learned weights of the first module are passed to self-attention, extract the most essential features, and can easily discriminate complex human actions. The proposed architecture is trained on the selected datasets, whereas the hyperparameters are chosen using the particle swarm optimization (PSO) algorithm. …”
-
44
Dongfanghong tractor.
Published 2025“…<div><p>The accuracy and consistency of obstacle avoidance map construction are poor in complex and changeable dynamic environment. In order to improve the driving safety of mountain tractors in complex mountain environment, an autonomous obstacle avoidance method for mountain tractors based on semantic neural network and laser SLAM was studied. …”
-
45
Experimental equipment parameters.
Published 2025“…<div><p>The accuracy and consistency of obstacle avoidance map construction are poor in complex and changeable dynamic environment. In order to improve the driving safety of mountain tractors in complex mountain environment, an autonomous obstacle avoidance method for mountain tractors based on semantic neural network and laser SLAM was studied. …”
-
46
Coordinate Conversion Process.
Published 2025“…<div><p>The accuracy and consistency of obstacle avoidance map construction are poor in complex and changeable dynamic environment. In order to improve the driving safety of mountain tractors in complex mountain environment, an autonomous obstacle avoidance method for mountain tractors based on semantic neural network and laser SLAM was studied. …”
-
47
Data for parameters.
Published 2025“…<div><p>The accuracy and consistency of obstacle avoidance map construction are poor in complex and changeable dynamic environment. In order to improve the driving safety of mountain tractors in complex mountain environment, an autonomous obstacle avoidance method for mountain tractors based on semantic neural network and laser SLAM was studied. …”
-
48
Semantic Label Addition Process.
Published 2025“…<div><p>The accuracy and consistency of obstacle avoidance map construction are poor in complex and changeable dynamic environment. In order to improve the driving safety of mountain tractors in complex mountain environment, an autonomous obstacle avoidance method for mountain tractors based on semantic neural network and laser SLAM was studied. …”
-
49
Minimum obstacle avoidance distance test results.
Published 2025“…<div><p>The accuracy and consistency of obstacle avoidance map construction are poor in complex and changeable dynamic environment. In order to improve the driving safety of mountain tractors in complex mountain environment, an autonomous obstacle avoidance method for mountain tractors based on semantic neural network and laser SLAM was studied. …”
-
50
Construction Results of Mountain Environment Map.
Published 2025“…<div><p>The accuracy and consistency of obstacle avoidance map construction are poor in complex and changeable dynamic environment. In order to improve the driving safety of mountain tractors in complex mountain environment, an autonomous obstacle avoidance method for mountain tractors based on semantic neural network and laser SLAM was studied. …”
-
51
-
52
Analysis and design of algorithms for the manufacturing process of integrated circuits
Published 2023“…From this, we propose: (i) a new ILP model, and (ii) a new solution representation, which, unlike the reference work, guarantees that feasible solutions are obtained throughout the generation of new individuals. Based on this new representation, we proposed and evaluated other approximate methods, including a greedy algorithm and a genetic algorithm that improve the state-of-the-art results for test cases usually used in the literature. …”
-
53
Summary of LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
54
SHAP analysis for LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
55
Comparison of intrusion detection systems.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
56
Parameter setting for CBOA and PSO.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
57
NSL-KDD dataset description.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
58
The architecture of LSTM cell.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
59
The architecture of ILSTM.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
60
Parameter setting for LSTM.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”