بدائل البحث:
design optimization » bayesian optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary case » binary mask (توسيع البحث), binary image (توسيع البحث), primary case (توسيع البحث)
case design » based design (توسيع البحث), game design (توسيع البحث), core design (توسيع البحث)
binary b » binary _ (توسيع البحث)
b model » _ model (توسيع البحث), a model (توسيع البحث), 2 model (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
binary case » binary mask (توسيع البحث), binary image (توسيع البحث), primary case (توسيع البحث)
case design » based design (توسيع البحث), game design (توسيع البحث), core design (توسيع البحث)
binary b » binary _ (توسيع البحث)
b model » _ model (توسيع البحث), a model (توسيع البحث), 2 model (توسيع البحث)
-
21
-
22
-
23
-
24
-
25
-
26
-
27
-
28
Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx
منشور في 2023"…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …"
-
29
-
30
Flowchart scheme of the ML-based model.
منشور في 2024"…<b>K)</b> Algorithm selection from all models. <b>L)</b> Random forest selection. …"
-
31
-
32
-
33
Summary of LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
34
SHAP analysis for LITNET-2020 dataset.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
35
Comparison of intrusion detection systems.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
36
Parameter setting for CBOA and PSO.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
37
NSL-KDD dataset description.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
38
The architecture of LSTM cell.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
39
The architecture of ILSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
40
Parameter setting for LSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"