Search alternatives:
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary cases » binary values (Expand Search), binary labels (Expand Search), binary mask (Expand Search)
main feature » main features (Expand Search), each feature (Expand Search), a feature (Expand Search)
cases based » case based (Expand Search), scores based (Expand Search), values based (Expand Search)
binary main » binary mask (Expand Search), binary image (Expand Search), binary pairs (Expand Search)
feature optimization » resource optimization (Expand Search), feature elimination (Expand Search), structure optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary cases » binary values (Expand Search), binary labels (Expand Search), binary mask (Expand Search)
main feature » main features (Expand Search), each feature (Expand Search), a feature (Expand Search)
cases based » case based (Expand Search), scores based (Expand Search), values based (Expand Search)
binary main » binary mask (Expand Search), binary image (Expand Search), binary pairs (Expand Search)
-
1
-
2
-
3
MSE for ILSTM algorithm in binary classification.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
4
-
5
-
6
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
7
-
8
-
9
GSE96058 information.
Published 2024“…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
-
10
The performance of classifiers.
Published 2024“…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
-
11
-
12
-
13
-
14
Summary of LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
15
SHAP analysis for LITNET-2020 dataset.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
16
Comparison of intrusion detection systems.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
17
Parameter setting for CBOA and PSO.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
18
NSL-KDD dataset description.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
19
The architecture of LSTM cell.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
20
The architecture of ILSTM.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”