Search alternatives:
models optimization » process optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary change » binary image (Expand Search)
change models » change model (Expand Search), choice models (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
models optimization » process optimization (Expand Search), wolf optimization (Expand Search), codon optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary change » binary image (Expand Search)
change models » change model (Expand Search), choice models (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
-
141
Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction
Published 2020“…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…”
-
142
Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx
Published 2024“…The analysis discerns three distinct clusters denoting varying degrees of urban integration within these familial units, namely high-level, medium-level, and low-level urban integration. We applied binary logit regression models to analyze the influence of family urban integration on the mental health among migrant workers. …”
-
143
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”