Showing 1 - 20 results of 57 for search '(( binary class a optimization algorithm ) OR ( binary class data optimization algorithm ))*', query time: 0.51s Refine Results
  1. 1
  2. 2
  3. 3
  4. 4
  5. 5

    Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data by Changhun Kim (682542)

    Published 2022
    “…However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
  6. 6
  7. 7

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
  8. 8
  9. 9
  10. 10

    MSE for ILSTM algorithm in binary classification. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  11. 11
  12. 12

    DataSheet1_Quantum-inspired optimization for wavelength assignment.PDF by Aleksey S. Boev (14441805)

    Published 2023
    “…Playing a central role in modern telecommunications, this problem belongs to NP-complete class for a general case so that obtaining optimal solutions for industry-relevant cases is exponentially hard. …”
  13. 13

    LITNET-2020 data splitting approach. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
  14. 14
  15. 15

    Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes by Yu Y. (3096192)

    Published 2022
    “…Different penalized-likelihood methods have been developed to mitigate sparse-data bias. We study penalized logistic regression using a class of log-F priors indexed by a shrinkage parameter m to shrink the biased MLE towards zero. …”
  16. 16

    ROC curve for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  17. 17

    Confusion matrix for binary classification. by Nicodemus Songose Awarayi (18414494)

    Published 2024
    “…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
  18. 18
  19. 19
  20. 20