Search alternatives:
a optimization » ai optimization (Expand Search), _ optimization (Expand Search), b optimization (Expand Search)
i optimization » ai optimization (Expand Search), _ optimization (Expand Search), b optimization (Expand Search)
class a » class _ (Expand Search), class 1 (Expand Search), class 3 (Expand Search)
class i » class _ (Expand Search)
a optimization » ai optimization (Expand Search), _ optimization (Expand Search), b optimization (Expand Search)
i optimization » ai optimization (Expand Search), _ optimization (Expand Search), b optimization (Expand Search)
class a » class _ (Expand Search), class 1 (Expand Search), class 3 (Expand Search)
class i » class _ (Expand Search)
-
1
-
2
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Flow diagram of the proposed model.
Published 2025“…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …”
-
10
-
11
Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model
Published 2025“…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …”
-
12
Supplementary Material 8
Published 2025“…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
-
13
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
Published 2025“…The single predictor variable was the mushroom habitat, a categorical feature that was preprocessed using the One-Hot Encoding technique, resulting in seven distinct binary variables. …”
-
14
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">IC50 (µg/mL): The concentration at which 50% of cells are inhibited, used as a toxicity threshold.</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …”