بدائل البحث:
where optimization » whale optimization (توسيع البحث), phase optimization (توسيع البحث), other optimization (توسيع البحث)
art optimization » swarm optimization (توسيع البحث), after optimization (توسيع البحث), path optimization (توسيع البحث)
binary labels » trinary labels (توسيع البحث)
labels where » areas where (توسيع البحث), cases where (توسيع البحث), calls where (توسيع البحث)
class art » class a (توسيع البحث)
where optimization » whale optimization (توسيع البحث), phase optimization (توسيع البحث), other optimization (توسيع البحث)
art optimization » swarm optimization (توسيع البحث), after optimization (توسيع البحث), path optimization (توسيع البحث)
binary labels » trinary labels (توسيع البحث)
labels where » areas where (توسيع البحث), cases where (توسيع البحث), calls where (توسيع البحث)
class art » class a (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
7
ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
8
-
9
The comparison of the accuracy score of the benchmark and the proposed models.
منشور في 2025الموضوعات: -
10
-
11
-
12
The statistical description of the original data set of the patients (<i>n</i> = 162).
منشور في 2025الموضوعات: -
13
Comparison of baseline and hybrid machine learning models in predicting IVF outcomes (%).
منشور في 2025الموضوعات: -
14
-
15
-
16
The list of parameters of the modified data set for machine learning (<i>n</i> = 162).
منشور في 2025الموضوعات: -
17
-
18
Calibration curve of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
19
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
20
An Example of a WPT-MEC Network.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"