بدائل البحث:
weights optimization » weight optimization (توسيع البحث), weights initialization (توسيع البحث), design optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
class weights » class weight (توسيع البحث)
class based » classes based (توسيع البحث), cases based (توسيع البحث), charts based (توسيع البحث)
weights optimization » weight optimization (توسيع البحث), weights initialization (توسيع البحث), design optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
class weights » class weight (توسيع البحث)
class based » classes based (توسيع البحث), cases based (توسيع البحث), charts based (توسيع البحث)
-
41
Image processing workflow.
منشور في 2020"…These annotated training images were passed to the cCNN to determine optimal network weights (e). The output of the network (from image depicted in panel c) is a confidence value for each sub-class (A–artifact; I—X–single through ten cell cluster), here presented in a radar chart (F). …"
-
42
Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model
منشور في 2025"…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …"
-
43
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
44
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
منشور في 2024"…Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. …"
-
45
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Regarding multiclass variables, accuracy remained consistent across classes, models, and NIR instruments (~0.63). However, the KNN model demonstrated slightly superior accuracy in classifying all cooking time classes, except for the CT4C variable (QST) in the NoCook and 25 min classes. …"
-
46
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
منشور في 2024"…Regarding multiclass variables, accuracy remained consistent across classes, models, and NIR instruments (~0.63). However, the KNN model demonstrated slightly superior accuracy in classifying all cooking time classes, except for the CT4C variable (QST) in the NoCook and 25 min classes. …"
-
47
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …"