يعرض 61 - 80 نتائج من 109 نتيجة بحث عن '(( binary class data optimization algorithm ) OR ( binary class feature classification algorithm ))', وقت الاستعلام: 1.00s تنقيح النتائج
  1. 61
  2. 62
  3. 63
  4. 64

    Dataset distribution. حسب Md. Sabbir Hossain (9958939)

    منشور في 2025
    الموضوعات:
  5. 65

    <i>hi</i>PRS algorithm process flow. حسب Michela C. Massi (14599915)

    منشور في 2023
    "…<p><b>(A)</b> Input data is a list of genotype-level SNPs. <b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …"
  6. 66

    Hierarchical Neyman-Pearson Classification for Prioritizing Severe Disease Categories in COVID-19 Patient Data حسب Lijia Wang (314011)

    منشور في 2023
    "…Beyond COVID-19 severity classification, the H-NP algorithm generally applies to multi-class classification problems, where classes have a priority order. …"
  7. 67
  8. 68
  9. 69
  10. 70
  11. 71
  12. 72
  13. 73
  14. 74
  15. 75
  16. 76
  17. 77

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  18. 78

    Related studies on IDS using deep learning. حسب Arshad Hashmi (13835488)

    منشور في 2024
    "…The attention layer and the BI-LSTM features are concatenated to create mapped features before feeding them to the random forest algorithm for classification. …"
  19. 79

    The architecture of the BI-LSTM model. حسب Arshad Hashmi (13835488)

    منشور في 2024
    "…The attention layer and the BI-LSTM features are concatenated to create mapped features before feeding them to the random forest algorithm for classification. …"
  20. 80

    Comparison of accuracy and DR on UNSW-NB15. حسب Arshad Hashmi (13835488)

    منشور في 2024
    "…The attention layer and the BI-LSTM features are concatenated to create mapped features before feeding them to the random forest algorithm for classification. …"