بدائل البحث:
feature classification » image classification (توسيع البحث), data classification (توسيع البحث), type classification (توسيع البحث)
data optimization » path optimization (توسيع البحث), dose optimization (توسيع البحث), art optimization (توسيع البحث)
class data » claims data (توسيع البحث)
feature classification » image classification (توسيع البحث), data classification (توسيع البحث), type classification (توسيع البحث)
data optimization » path optimization (توسيع البحث), dose optimization (توسيع البحث), art optimization (توسيع البحث)
class data » claims data (توسيع البحث)
-
61
-
62
-
63
-
64
-
65
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…<p><b>(A)</b> Input data is a list of genotype-level SNPs. <b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …"
-
66
Hierarchical Neyman-Pearson Classification for Prioritizing Severe Disease Categories in COVID-19 Patient Data
منشور في 2023"…Beyond COVID-19 severity classification, the H-NP algorithm generally applies to multi-class classification problems, where classes have a priority order. …"
-
67
-
68
ROC and PR–AUC curves of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
69
-
70
The comparison of the accuracy score of the benchmark and the proposed models.
منشور في 2025الموضوعات: -
71
-
72
Comparison of baseline and hybrid machine learning models in predicting IVF outcomes (%).
منشور في 2025الموضوعات: -
73
-
74
-
75
-
76
Calibration curve of the ABC–LR–RF hybrid model for IVF outcome prediction.
منشور في 2025الموضوعات: -
77
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
-
78
Related studies on IDS using deep learning.
منشور في 2024"…The attention layer and the BI-LSTM features are concatenated to create mapped features before feeding them to the random forest algorithm for classification. …"
-
79
The architecture of the BI-LSTM model.
منشور في 2024"…The attention layer and the BI-LSTM features are concatenated to create mapped features before feeding them to the random forest algorithm for classification. …"
-
80
Comparison of accuracy and DR on UNSW-NB15.
منشور في 2024"…The attention layer and the BI-LSTM features are concatenated to create mapped features before feeding them to the random forest algorithm for classification. …"