بدائل البحث:
initialization algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), identification algorithm (توسيع البحث)
weighted initialization » weights initialization (توسيع البحث)
i optimization » _ optimization (توسيع البحث), acid optimization (توسيع البحث), fox optimization (توسيع البحث)
class weighted » class weight (توسيع البحث), class weights (توسيع البحث), class weighting (توسيع البحث)
class i » class ii (توسيع البحث), class c (توسيع البحث), class _ (توسيع البحث)
initialization algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), identification algorithm (توسيع البحث)
weighted initialization » weights initialization (توسيع البحث)
i optimization » _ optimization (توسيع البحث), acid optimization (توسيع البحث), fox optimization (توسيع البحث)
class weighted » class weight (توسيع البحث), class weights (توسيع البحث), class weighting (توسيع البحث)
class i » class ii (توسيع البحث), class c (توسيع البحث), class _ (توسيع البحث)
-
41
Image processing workflow.
منشور في 2020"…These annotated training images were passed to the cCNN to determine optimal network weights (e). The output of the network (from image depicted in panel c) is a confidence value for each sub-class (A–artifact; I—X–single through ten cell cluster), here presented in a radar chart (F). …"
-
42
-
43
-
44
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
منشور في 2020"…The proposed multilabel approaches convert the original 8-class problem into a set of three binary problems to facilitate the use of the CSP algorithm. …"
-
45
-
46
-
47
DataSheet_1_Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.docx
منشور في 2024"…Across the training set, internal validation set, external validation set, and prospective validation set, the macro-average Area Under the Curve (AUC) based on the RadImageNet dataset surpassed those based on the ImageNet dataset, with statistically significant differences observed (P<0.05). Utilizing the binary “One-vs-Rest” strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. …"
-
48
Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model
منشور في 2025"…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …"
-
49
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
منشور في 2022"…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …"
-
50
Supplementary Material 8
منشور في 2025"…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
-
51
Predictive Analysis of Mushroom Toxicity Based Exclusively on Their Natural Habitat.
منشور في 2025"…The single predictor variable was the mushroom habitat, a categorical feature that was preprocessed using the One-Hot Encoding technique, resulting in seven distinct binary variables. …"
-
52
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…<p dir="ltr">The first algorithm for segmentation and localization (see PathOlOgics_script_1; segment & localize using a pen) relied on manually tracing the borders of each cell using a digital pen tool on a big touchscreen display showing source images/patches. …"
-
53
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
منشور في 2025"…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …"