Search alternatives:
based optimization » whale optimization (Expand Search)
ii optimization » ai optimization (Expand Search), ivy optimization (Expand Search), _ optimization (Expand Search)
binary cases » binary values (Expand Search), binary labels (Expand Search), binary mask (Expand Search)
cases based » case based (Expand Search), scores based (Expand Search), values based (Expand Search)
class ii » class c (Expand Search)
based optimization » whale optimization (Expand Search)
ii optimization » ai optimization (Expand Search), ivy optimization (Expand Search), _ optimization (Expand Search)
binary cases » binary values (Expand Search), binary labels (Expand Search), binary mask (Expand Search)
cases based » case based (Expand Search), scores based (Expand Search), values based (Expand Search)
class ii » class c (Expand Search)
-
21
Comparison of intrusion detection systems.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
22
Parameter setting for CBOA and PSO.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
23
NSL-KDD dataset description.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
24
The architecture of LSTM cell.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
25
The architecture of ILSTM.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
26
Parameter setting for LSTM.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
27
LITNET-2020 data splitting approach.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
28
Transformation of symbolic features in NSL-KDD.
Published 2023“…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …”
-
29
ROC curve for binary classification.
Published 2024“…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
-
30
Confusion matrix for binary classification.
Published 2024“…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
-
31
-
32
-
33
Flow diagram of the proposed model.
Published 2025“…Across all algorithm models, LR–ABC hybrids outperformed their baseline models (e.g., Random Forest: 85.2% → 91.36% accuracy). …”
-
34
-
35
-
36
-
37
Testing results for classifying AD, MCI and NC.
Published 2024“…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
-
38
Summary of existing CNN models.
Published 2024“…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …”
-
39
-
40
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
Published 2022“…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”