Showing 1 - 4 results of 4 for search '(( binary class lca optimization algorithm ) OR ( urinary levels based optimization algorithm ))*', query time: 0.32s Refine Results
  1. 1

    Image 1_Characterization of cancer-related fibroblasts in bladder cancer and construction of CAFs-based bladder cancer classification: insights from single-cell and multi-omics ana... by Zhaokai Zhou (15239078)

    Published 2025
    “…Next, we comprehensively explored the distinct heterogeneity and characteristics for four CAFs-based BLCA subtypes. Moreover, machine learning algorithms were applied to identify novel potential targets for each subtype, and experimentally validate their effects.…”
  2. 2

    Table 1_Characterization of cancer-related fibroblasts in bladder cancer and construction of CAFs-based bladder cancer classification: insights from single-cell and multi-omics ana... by Zhaokai Zhou (15239078)

    Published 2025
    “…Next, we comprehensively explored the distinct heterogeneity and characteristics for four CAFs-based BLCA subtypes. Moreover, machine learning algorithms were applied to identify novel potential targets for each subtype, and experimentally validate their effects.…”
  3. 3

    Image 2_Characterization of cancer-related fibroblasts in bladder cancer and construction of CAFs-based bladder cancer classification: insights from single-cell and multi-omics ana... by Zhaokai Zhou (15239078)

    Published 2025
    “…Next, we comprehensively explored the distinct heterogeneity and characteristics for four CAFs-based BLCA subtypes. Moreover, machine learning algorithms were applied to identify novel potential targets for each subtype, and experimentally validate their effects.…”
  4. 4

    Data_Sheet_1_Machine Learning-Enabled 30-Day Readmission Model for Stroke Patients.pdf by Negar Darabi (10502579)

    Published 2021
    “…</p><p>Methods: We used patient-level data from electronic health records (EHR), five machine learning algorithms (random forest, gradient boosting machine, extreme gradient boosting–XGBoost, support vector machine, and logistic regression-LR), data-driven feature selection strategy, and adaptive sampling to develop 15 models of 30-day readmission after ischemic stroke. …”