يعرض 1 - 5 نتائج من 5 نتيجة بحث عن '(( binary class lead optimization algorithm ) OR ( binary class data optimization algorithm ))~', وقت الاستعلام: 0.28s تنقيح النتائج
  1. 1

    <i>hi</i>PRS algorithm process flow. حسب Michela C. Massi (14599915)

    منشور في 2023
    "…<p><b>(A)</b> Input data is a list of genotype-level SNPs. <b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …"
  2. 2

    Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes حسب Yu Y. (3096192)

    منشور في 2022
    "…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …"
  3. 3

    PathOlOgics_RBCs Python Scripts.zip حسب Ahmed Elsafty (16943883)

    منشور في 2023
    "…</p><p dir="ltr">To assess the consistency, diversity, and complexity of the processed data, the Uniform Manifold Approximation and Projection (UMAP) technique was employed to investigate the structural relationships among the various classes (see PathOlOgics_script_3; UMAP visualizations). …"
  4. 4

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods حسب Jiacong Du (12035845)

    منشور في 2022
    "…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …"
  5. 5

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…In AMR studies, datasets often contain more susceptible isolates than resistant ones, leading to biased model performance. SMOTE overcomes this issue by generating synthetic samples of the minority class (resistant isolates) through interpolation rather than simple duplication, thereby improving model generalization.…"