بدائل البحث:
lead optimization » global optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
data optimization » path optimization (توسيع البحث), dose optimization (توسيع البحث), art optimization (توسيع البحث)
class lead » class lca (توسيع البحث), class left (توسيع البحث)
class data » claims data (توسيع البحث)
lead optimization » global optimization (توسيع البحث), swarm optimization (توسيع البحث), whale optimization (توسيع البحث)
data optimization » path optimization (توسيع البحث), dose optimization (توسيع البحث), art optimization (توسيع البحث)
class lead » class lca (توسيع البحث), class left (توسيع البحث)
class data » claims data (توسيع البحث)
-
1
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…<p><b>(A)</b> Input data is a list of genotype-level SNPs. <b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …"
-
2
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
منشور في 2022"…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …"
-
3
PathOlOgics_RBCs Python Scripts.zip
منشور في 2023"…</p><p dir="ltr">To assess the consistency, diversity, and complexity of the processed data, the Uniform Manifold Approximation and Projection (UMAP) technique was employed to investigate the structural relationships among the various classes (see PathOlOgics_script_3; UMAP visualizations). …"
-
4
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
منشور في 2022"…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …"
-
5
Supplementary Material 8
منشور في 2025"…In AMR studies, datasets often contain more susceptible isolates than resistant ones, leading to biased model performance. SMOTE overcomes this issue by generating synthetic samples of the minority class (resistant isolates) through interpolation rather than simple duplication, thereby improving model generalization.…"