Search alternatives:
process optimization » model optimization (Expand Search)
data optimization » path optimization (Expand Search), dose optimization (Expand Search), art optimization (Expand Search)
class process » cross process (Expand Search), cgan process (Expand Search), gans process (Expand Search)
class data » claims data (Expand Search)
process optimization » model optimization (Expand Search)
data optimization » path optimization (Expand Search), dose optimization (Expand Search), art optimization (Expand Search)
class process » cross process (Expand Search), cgan process (Expand Search), gans process (Expand Search)
class data » claims data (Expand Search)
-
21
-
22
-
23
-
24
Calibration curve of the ABC–LR–RF hybrid model for IVF outcome prediction.
Published 2025Subjects: -
25
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
26
-
27
Image processing workflow.
Published 2020“…<p>Raw fluorescent microscope images (a) were processed with a binary segmentation algorithm, and clusters of bacterial cells were manually annotated. …”
-
28
-
29
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
Published 2022“…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”
-
30
-
31
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">To assess the consistency, diversity, and complexity of the processed data, the Uniform Manifold Approximation and Projection (UMAP) technique was employed to investigate the structural relationships among the various classes (see PathOlOgics_script_3; UMAP visualizations). …”
-
32
-
33
-
34
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
35
-
36
Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods
Published 2022“…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
-
37
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
38
Supplementary Material 8
Published 2025“…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
-
39
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…Details on the data sourcing process, prompt engineering strategies for large language model (LLM)-based extraction, and validation protocols are provided in the Supplementary Information section.…”