بدائل البحث:
initialization algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), identification algorithm (توسيع البحث)
weighted initialization » weights initialization (توسيع البحث)
y optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), d optimization (توسيع البحث)
class weighted » class weight (توسيع البحث), class weights (توسيع البحث), class weighting (توسيع البحث)
class y » class c (توسيع البحث), class _ (توسيع البحث), class i (توسيع البحث)
initialization algorithm » optimization algorithms (توسيع البحث), maximization algorithm (توسيع البحث), identification algorithm (توسيع البحث)
weighted initialization » weights initialization (توسيع البحث)
y optimization » _ optimization (توسيع البحث), b optimization (توسيع البحث), d optimization (توسيع البحث)
class weighted » class weight (توسيع البحث), class weights (توسيع البحث), class weighting (توسيع البحث)
class y » class c (توسيع البحث), class _ (توسيع البحث), class i (توسيع البحث)
-
21
The architecture of LSTM cell.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
22
The architecture of ILSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
23
Parameter setting for LSTM.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
24
LITNET-2020 data splitting approach.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
25
Transformation of symbolic features in NSL-KDD.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
26
-
27
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
منشور في 2024"…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"