Showing 1 - 18 results of 18 for search '(( binary climate codon optimization algorithm ) OR ( primary core data optimization algorithm ))', query time: 0.64s Refine Results
  1. 1

    Proposed model tuned hyperparameters. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  2. 2

    The workflow of the proposed model. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  3. 3

    ResNeXt101 training and results. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  4. 4

    Proposed model specificity and DSC outcomes. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  5. 5

    Accuracy comparison of proposed and other models. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  6. 6

    Architecture of ConvNet. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  7. 7

    Comparison of state-of-the-art method. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  8. 8

    Proposed model sensitivity outcome. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  9. 9

    Proposed ResNeXt101 operational flow. by Subathra Gunasekaran (19492680)

    Published 2024
    “…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
  10. 10

    All online review text data. by Yuandi Jiang (16540833)

    Published 2025
    “…The findings showed: 1) Museum visitors were highly concentrated in eastern coastal regions, with spatial distribution evolving from single-core to multi-core clusters, gradually expanding into central areas (e.g., Henan, Hubei, Shaanxi). 2) Museum image perception has shifted from object-centered to more human-centered experiences, with significant differences across the various categories. 3) Over 75% of visitors reported positive experiences, with ethnography museums showing the highest satisfaction in 2024 (<i>Pro</i> = 0.922), whereas history museums consistently had the lowest. 4) Satisfaction drivers were dynamic, with 85.26% of perception themes significantly correlated with satisfaction (<i>p</i> < 0.01), with rich collections, distinctive features, immersive experiences, and diverse visitation forms identified as the primary contributors to positive visitor experiences. …”
  11. 11
  12. 12
  13. 13

    CIAHS-Data.xls by Yingchang Li (22195585)

    Published 2025
    “…This method identifies inherent natural grouping points within the data through the Jenks optimization algorithm, maximizing between-class differences while minimizing within-class differences37. …”
  14. 14

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows by Pierre-Alexis DELAROCHE (22092572)

    Published 2025
    “…Experimental Methodology Framework Local Processing Pipeline Architecture Data Flow: Storage I/O → Memory Buffer → CPU/GPU Processing → Cache Coherency → Storage I/O ├── Input Vector: mmap() system call for zero-copy file access ├── Processing Engine: OpenMP parallelization with NUMA-aware thread affinity ├── Memory Management: Custom allocator with hugepage backing └── Output Vector: Direct I/O bypassing kernel page cache Cloud Processing Pipeline Architecture Data Flow: Local Storage → Network Stack → TLS Tunnel → CDN Edge → Origin Server → Processing Grid → Response Pipeline ├── Upload Phase: TCP window scaling with congestion control algorithms ├── Network Layer: Application-layer protocol with adaptive bitrate streaming ├── Server-side Processing: Containerized microservices on Kubernetes orchestration ├── Load Balancing: Consistent hashing with geographic affinity routing └── Download Phase: HTTP/2 multiplexing with server push optimization Dataset Schema and Semantic Structure Primary Data Vectors Field Data Type Semantic Meaning Measurement Unit test_type Categorical Processing paradigm identifier {local_processing, cloud_processing} photo_count Integer Cardinality of input asset vector Count avg_file_size_mb Float64 Mean per-asset storage footprint Mebibytes (2^20 bytes) total_volume_gb Float64 Aggregate data corpus size Gigabytes (10^9 bytes) processing_time_sec Integer Wall-clock execution duration Seconds (SI base unit) cpu_usage_watts Float64 Thermal design power consumption Watts (Joules/second) ram_usage_mb Integer Peak resident set size Mebibytes network_upload_mb Float64 Egress bandwidth utilization Mebibytes energy_consumption_kwh Float64 Cumulative energy expenditure Kilowatt-hours co2_equivalent_g Float64 Carbon footprint estimation Grams CO₂e test_date ISO8601 Temporal execution marker RFC 3339 format hardware_config String Node topology identifier Alphanumeric encoding Statistical Distribution Characteristics The dataset exhibits non-parametric distribution patterns with significant heteroscedasticity across computational load vectors. …”
  15. 15

    Image 1_Development of machine learning predictive model for type 2 diabetic retinopathy using the triglyceride-glucose index explained by SHAP method.png by Xiaoqin Liu (296429)

    Published 2025
    “…Introduction<p>This study aimed to develop a diabetic retinopathy (DR) Prediction model using various machine learning algorithms incorporating the novel predictor Triglyceride-glucose index (TyG). …”
  16. 16

    Image 2_Development of machine learning predictive model for type 2 diabetic retinopathy using the triglyceride-glucose index explained by SHAP method.png by Xiaoqin Liu (296429)

    Published 2025
    “…Introduction<p>This study aimed to develop a diabetic retinopathy (DR) Prediction model using various machine learning algorithms incorporating the novel predictor Triglyceride-glucose index (TyG). …”
  17. 17

    2000–2020 Monthly Air Quality Index (AQI) Dataset of China by Chaohao Ling (19840471)

    Published 2025
    “…Four tree-based ensemble algorithms (Random Forest [RF], Gradient Boosting Machine [GBM], CatBoost, XGBoost) were compared, with the RF model selected as optimal (test set: R² = 0.83, Root Mean Square Error [RMSE] = 10.25, Mean Absolute Error [MAE] = 9.03) after validation via 10-fold geographic stratified cross-validation and 100 bootstrap iterations; Recursive Feature Elimination (RFE) further refined 14 core predictors to minimize overfitting. …”
  18. 18

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…The dataset also enables parameter space mapping, allowing the generation of 2D/3D response surfaces showing toxicity trends across varying core sizes and dosages.</p><p dir="ltr">This curated dataset addresses several limitations of existing toxicological datasets by enhancing feature diversity, standardization, and data quality control. …”