Search alternatives:
based classification » image classification (Expand Search), binary classification (Expand Search), _ classification (Expand Search)
based optimization » whale optimization (Expand Search)
binary complex » ternary complex (Expand Search), snare complex (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
based classification » image classification (Expand Search), binary classification (Expand Search), _ classification (Expand Search)
based optimization » whale optimization (Expand Search)
binary complex » ternary complex (Expand Search), snare complex (Expand Search)
binary 2 » binary _ (Expand Search), binary b (Expand Search)
2 based » _ based (Expand Search), 1 based (Expand Search), ai based (Expand Search)
-
101
Data_Sheet_1_Physics-Inspired Optimization for Quadratic Unconstrained Problems Using a Digital Annealer.pdf
Published 2019“…The Digital Annealer's algorithm is currently based on simulated annealing; however, it differs from it in its utilization of an efficient parallel-trial scheme and a dynamic escape mechanism. …”
-
102
Quadratic polynomial in 2D image plane.
Published 2024“…The computation time for CBFD is 2.8 ms, which is at least 6.7% lower than that of other algorithms. …”
-
103
-
104
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
105
Fairness in Machine Learning: A Review for Statisticians
Published 2025“…We organize these fairness-enhancing mechanisms into three categories—pre-processing, in-processing, and post-processing—corresponding to different stages of the machine learning lifecycle and varying levels of access to the underlying algorithm. The discussion focuses on fairness in binary classification models using numerical tabular data, which serve as a foundation for addressing fairness in more complex algorithms. …”
-
106
Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf
Published 2020“…Here, we propose a solution to address the limitation of identifiable motor activities by using combined MIs (i.e., MIs involving 2 or more body parts at the same time). And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …”
-
107
Structure-based antibody paratope prediction with 3D Zernike descriptors and SVM
Published 2019“…Roto-translationally invariant descriptors are computed from circular patches of the antibody surface enriched with a chosen subset of physicochemical properties from the AAindex1 amino acid index set, and are used as samples for a binary classification problem. An SVM classifier is used to distinguish interface surface patches from non-interface ones. …”
-
108
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
109
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
110
-
111
Table 1_Non-obtrusive monitoring of obstructive sleep apnea syndrome based on ballistocardiography: a preliminary study.docx
Published 2025“…Furthermore, our approach directly extracts features from BCG signals without employing a complex algorithm to derive respiratory and heart rate signals as often done in literature, further simplifying the algorithm pipeline. …”
-
112
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
113
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
114
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
115
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
116
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
117
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
118
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
119
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
120
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …”