يعرض 101 - 120 نتائج من 156 نتيجة بحث عن '(( binary complex improved classification algorithm ) OR ( binary 2 based optimization algorithm ))', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 101
  2. 102
  3. 103
  4. 104
  5. 105
  6. 106

    Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19. حسب Jiaqing Luo (10975030)

    منشور في 2021
    "…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …"
  7. 107

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level حسب Giovanni Nattino (561797)

    منشور في 2021
    "…Propensity score matching is a popular method to infer causal relationships in observational studies with two treatment arms. Few studies, however, have used matching designs with more than two groups, due to the complexity of matching algorithms. …"
  8. 108
  9. 109
  10. 110

    Analysis and design of algorithms for the manufacturing process of integrated circuits حسب Sonia Fleytas (16856403)

    منشور في 2023
    "…The (approximate) solution proposals of state-of-the-art methods include rule-based approaches, genetic algorithms, and reinforcement learning. …"
  11. 111
  12. 112
  13. 113

    Testing results for classifying AD, MCI and NC. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
  14. 114

    Summary of existing CNN models. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
  15. 115

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP حسب Xiaoyuan Wang (492534)

    منشور في 2022
    "…In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
  16. 116
  17. 117

    Summary of LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  18. 118

    SHAP analysis for LITNET-2020 dataset. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  19. 119

    Comparison of intrusion detection systems. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  20. 120

    Parameter setting for CBOA and PSO. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"