Search alternatives:
process detection » process reflection (Expand Search), protein detection (Expand Search), stress detection (Expand Search)
3d optimization » d optimization (Expand Search), led optimization (Expand Search), _ optimization (Expand Search)
binary complex » ternary complex (Expand Search), snare complex (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based 3d » based _ (Expand Search)
process detection » process reflection (Expand Search), protein detection (Expand Search), stress detection (Expand Search)
3d optimization » d optimization (Expand Search), led optimization (Expand Search), _ optimization (Expand Search)
binary complex » ternary complex (Expand Search), snare complex (Expand Search)
binary based » library based (Expand Search), linac based (Expand Search), binary mask (Expand Search)
based 3d » based _ (Expand Search)
-
1
-
2
Joint Detection of Change Points in Multichannel Single-Molecule Measurements
Published 2021Subjects: -
3
-
4
-
5
-
6
Table_1_Fusion of fruit image processing and deep learning: a study on identification of citrus ripeness based on R-LBP algorithm and YOLO-CIT model.docx
Published 2024“…The YOLO-CIT model combined with the R-LBP algorithm has a Precision of 88.13%, a Recall of 93.16%, an F1 score of 90.89, a mAP@0.5 of 85.88%, and 6.1ms of average detection speed for citrus fruit ripeness identification in complex environments. …”
-
7
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
8
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
9
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
10
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
11
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
12
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
13
Deactivated Cas9-Engineered Magnetic Micromotors toward a Point-of-Care Digital Viral RNA Assay
Published 2025“…A convolutional neural network classification-based multiobject tracking algorithm, CNN-MOT, accurately measures the change in micromotor motion, facilitating the binary digital assay format (“1” or “0”) for simplified result interpretation without user bias. …”
-
14
-
15
Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease
Published 2025“…<i>Z</i> score standardization and independent sample <i>t</i> test were applied to identify optimal predictive features, which were then utilized in seven ML algorithms for training and validation. …”
-
16
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
-
17
-
18
Table 1_Non-obtrusive monitoring of obstructive sleep apnea syndrome based on ballistocardiography: a preliminary study.docx
Published 2025“…Furthermore, our approach directly extracts features from BCG signals without employing a complex algorithm to derive respiratory and heart rate signals as often done in literature, further simplifying the algorithm pipeline. …”
-
19
Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield...
Published 2022“…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
-
20
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">These biological metrics were used to define a binary toxicity label: entries were classified as toxic (1) or non-toxic (0) based on thresholds from standardized guidelines (e.g., ISO 10993-5:2009) and literature consensus. …”