بدائل البحث:
design optimization » bayesian optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary classes » binary classifiers (توسيع البحث)
classes based » cases based (توسيع البحث), clusters based (توسيع البحث), classified based (توسيع البحث)
core design » course design (توسيع البحث), co design (توسيع البحث), cohort design (توسيع البحث)
design optimization » bayesian optimization (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary classes » binary classifiers (توسيع البحث)
classes based » cases based (توسيع البحث), clusters based (توسيع البحث), classified based (توسيع البحث)
core design » course design (توسيع البحث), co design (توسيع البحث), cohort design (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
MSE for ILSTM algorithm in binary classification.
منشور في 2023"…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
-
10
-
11
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
12
ROC curve for binary classification.
منشور في 2024"…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
-
13
Confusion matrix for binary classification.
منشور في 2024"…<div><p>This study aims to develop an optimally performing convolutional neural network to classify Alzheimer’s disease into mild cognitive impairment, normal controls, or Alzheimer’s disease classes using a magnetic resonance imaging dataset. …"
-
14
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
منشور في 2022"…However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …"
-
15
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
16
-
17
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
18
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"
-
19
-
20