Search alternatives:
process optimization » model optimization (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
binary damage » binary image (Expand Search), binary data (Expand Search)
based complex » layer complex (Expand Search)
lens » less (Expand Search)
process optimization » model optimization (Expand Search)
complex optimization » convex optimization (Expand Search), whale optimization (Expand Search), wolf optimization (Expand Search)
binary damage » binary image (Expand Search), binary data (Expand Search)
based complex » layer complex (Expand Search)
lens » less (Expand Search)
-
1
Lens imaging opposition-based learning.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
2
-
3
-
4
Compare algorithm parameter settings.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
5
-
6
-
7
-value on CEC2022 (dim = 20).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
8
Precision elimination strategy.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
9
Results of low-light image enhancement test.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
10
-value on 23 benchmark functions (dim = 30).
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
11
Evaluation metrics obtained by SBOA and MESBOA.
Published 2025“…The algorithm integrates three key strategies: a precise population elimination strategy, which optimizes the population structure by eliminating individuals with low fitness and intelligently generating new ones; a lens imaging-based opposition learning strategy, which expands the exploration of the solution space through reflection and scaling to reduce the risk of local optima; and a boundary control strategy based on the best individual, which effectively constrains the search range to avoid inefficient searches and premature convergence. …”
-
12
-
13
Minisymposterium: Muq-Hippylib: A Bayesian Inference Software Framework Integrating Data with Complex Predictive Models under Uncertainty
Published 2021“…The central questions are: How do we optimally learn from data through the lens of models? …”
-
14
SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
Published 2020“…The central questions are: How do we optimally learn from data through the lens of models? …”
-
15
SI2-SSI: Integrating Data with Complex Predictive Models under Uncertainty: An Extensible Software Framework for Large-Scale Bayesian Inversion
Published 2020“…The central questions are: How do we optimally learn from data through the lens of models? …”
-
16
Parameter settings.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
17
Fusion framework.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
18
Generation steps of user profiles.
Published 2025“…The study proposes a movie recommendation algorithm framework that integrates Knowledge Graph Embedding via Dynamic Mapping Matrix (TransD) and Artificial Intelligence Generated Content (AIGC)-based generative semantic modeling. …”
-
19
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”
-
20
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
Published 2025“…Machine learning regression algorithms were trained to predict betalain accumulation from digital images, outperforming classic spectroradiometer measurements. …”