بدائل البحث:
based optimization » whale optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
tasks based » task based (توسيع البحث), cases based (توسيع البحث)
based optimization » whale optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
tasks based » task based (توسيع البحث), cases based (توسيع البحث)
-
1
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
2
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
3
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
4
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
5
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
6
An Example of a WPT-MEC Network.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
7
Related Work Summary.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
8
Simulation parameters.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
9
Training losses for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
10
Normalized computation rate for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
11
Summary of Notations Used in this paper.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
12
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
13
Pseudo Code of RBMO.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
14
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
15
Memory storage behavior.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
16
Elite search behavior.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
17
Description of the datasets.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
18
S and V shaped transfer functions.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
19
S- and V-Type transfer function diagrams.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"
-
20
Collaborative hunting behavior.
منشور في 2025"…To address this problem, this paper proposes an improved red-billed blue magpie algorithm (IRBMO), which is specifically optimized for the feature selection task, and significantly improves the performance and efficiency of the algorithm on medical data by introducing multiple innovative behavioral strategies. …"