بدائل البحث:
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
a optimization » ai optimization (توسيع البحث), _ optimization (توسيع البحث), b optimization (توسيع البحث)
binary climate » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data a » data _ (توسيع البحث), data 1 (توسيع البحث), data b (توسيع البحث)
policy optimization » topology optimization (توسيع البحث), wolf optimization (توسيع البحث), process optimization (توسيع البحث)
a optimization » ai optimization (توسيع البحث), _ optimization (توسيع البحث), b optimization (توسيع البحث)
binary climate » binary image (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data a » data _ (توسيع البحث), data 1 (توسيع البحث), data b (توسيع البحث)
-
41
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
منشور في 2021"…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …"
-
42
Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures
منشور في 2021"…The subset of optimal descriptors was screened by combining the genetic algorithm with the multiple linear regression method. …"
-
43
Comparison in terms of the sensitivity.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
44
Parameter sensitivity of BIMGO.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
45
Details of the medical datasets.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
46
The flowchart of IMGO.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
47
Comparison in terms of the selected features.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
48
Iterative chart of control factor.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
49
Details of 23 basic benchmark functions.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
50
Related researches.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
51
S1 Dataset -
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
52
-
53
-
54
-
55
Related Work Summary.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
56
Simulation parameters.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
57
Training losses for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
58
Normalized computation rate for N = 10.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
59
Summary of Notations Used in this paper.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
60
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …"