Showing 1 - 19 results of 19 for search '(( binary data all optimization algorithm ) OR ( binary leave swarm optimization algorithm ))', query time: 1.01s Refine Results
  1. 1
  2. 2
  3. 3

    Flow diagram of the proposed model. by Uğur Ejder (22683228)

    Published 2025
    “…Local Interpretable Model-agnostic Explanations (LIME) were applied to improve interpretability. Across all algorithm models, LR–ABC hybrids outperformed their baseline models (e.g., Random Forest: 85.2% → 91.36% accuracy). …”
  4. 4
  5. 5

    Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes by Yu Y. (3096192)

    Published 2022
    “…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”
  6. 6
  7. 7
  8. 8
  9. 9

    Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity by George S. Watts (7962206)

    Published 2019
    “…Adopting metagenomic analysis for clinical use requires that all aspects of the workflow are optimized and tested, including data analysis and computational time and resources. …”
  10. 10

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…Next, a hybrid feature extraction approach is presented leveraging transfer learning from selected deep neural network models, InceptionV3 and DenseNet201, to extract comprehensive feature sets. To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  11. 11

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…</p>Results<p>A total of 21 tree species were identified. Among all classifiers, Random Forest and Decision Tree exhibited superior performance, with Random Forest achieving the highest species-level accuracy (95% for Peepal and Medlar) and overall accuracy of 82.56% (Kappa = 0.81) when applied to PCA-transformed data.…”
  12. 12

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
  13. 13

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…No segmented cell(s) occupied a space larger than 80x80 pixels, including the three-overlapping RBCs. As a result, the algorithm centred/padded each cell(s) within an 80x80 pixel-sized image, generating mask, cropped, and segmented images, all following a standardized naming convention that begins with the slide/smear number, followed by the patch number, and concludes with the (XYWH) coordinates. …”
  14. 14
  15. 15

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
  16. 16

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods by Jiacong Du (12035845)

    Published 2022
    “…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
  17. 17

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
  18. 18

    Flow diagram of the automatic animal detection and background reconstruction. by David Tadres (9120564)

    Published 2020
    “…All data used to create these plots are available from <a href="https://doi.org/10.25349/D9ZK50" target="_blank">https://doi.org/10.25349/D9ZK50</a>.…”
  19. 19

    An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach by Sanaa Badr (20628838)

    Published 2025
    “…The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. …”