Search alternatives:
property optimization » process optimization (Expand Search), policy optimization (Expand Search), robust optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
property optimization » process optimization (Expand Search), policy optimization (Expand Search), robust optimization (Expand Search)
based optimization » whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
-
1
-
2
Data_Sheet_1_A Global Optimizer for Nanoclusters.PDF
Published 2019“…We have used our strategy on some of the well-studied clusters such as Pd, Pt, Au, and Al homometallic clusters, Ru-Pt and Au-Pt binary clusters, and Ag-Au-Pt ternary cluster. We have analyzed some of the popular parameters to characterize the clusters, such as relative energy, singlet-triplet energy difference, binding energy, second-order energy difference, and mixing energy, and compared with the reported properties.…”
-
3
-
4
-
5
-
6
-
7
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
8
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025Subjects: “…differential evolution algorithm…”
-
9
-
10
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
-
11
Proposed Algorithm.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
12
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
13
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
14
-
15
Comparisons between ADAM and NADAM optimizers.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
16
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
17
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
18
-
19
-
20